Aryl Hydrocarbon Receptor Activity of Tryptophan Metabolites in Young Adult Mouse Colonocytes.
نویسندگان
چکیده
The tryptophan microbiota metabolites indole-3-acetate, indole-3-aldehyde, indole, and tryptamine are aryl hydrocarbon receptor (AhR) ligands, and in this study we investigated their AhR agonist and antagonist activities in nontransformed young adult mouse colonocyte (YAMC) cells. Using Cyp1a1 mRNA as an Ah-responsive end point, we observed that the tryptophan metabolites were weak AhR agonists and partial antagonists in YAMC cells, and the pattern of activity was different from that previously observed in CaCo2 colon cancer cells. However, expansion of the end points to other Ah-responsive genes including the Cyp1b1, the AhR repressor (Ahrr), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiParp) revealed a highly complex pattern of AhR agonist/antagonist activities that were both ligand- and gene-dependent. For example, the magnitude of induction of Cyp1b1 mRNA was similar for TCDD, tryptamine, and indole-3-acetate, whereas lower induction was observed for indole and indole-3-aldehyde was inactive. These results suggest that the tryptophan metabolites identified in microbiota are selective AhR modulators.
منابع مشابه
Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities s
The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiotaderived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydroca...
متن کاملMicrobiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities.
The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydroc...
متن کاملMol091165 777..788
The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiotaderived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydroca...
متن کاملIdentification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand That Drives IL-22 Production
The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environme...
متن کاملLigand Binding and Functional Selectivity of l-Tryptophan Metabolites at the Mouse Aryl Hydrocarbon Receptor (mAhR)
The aryl hydrocarbon receptor (AhR) is a nuclear receptor regulating a wide range of biological and toxicological effects. Metabolites of L-tryptophan are able to bind and activate AhR, providing a link between tryptophan catabolism and a novel mechanism of protective tolerance, referred to as "disease tolerance". The notion that pharmacologic modulation of genes associated with endotoxin toler...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 43 10 شماره
صفحات -
تاریخ انتشار 2015